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Abstract

The Sun’s proximity offers us a unique opportunity to study in detail the physical processes on a
star’s surface; however, the highly dynamic nature of the stellar surface — in particular, energetic
eruptions such as flares and coronal mass ejections — presents tremendous observational challenges.
Spectroscopy probes the physical state of the solar atmosphere, but conventional scanning spec-
trographs and spectrometers are unable to capture the full evolutionary history of these dynamic
events with a sufficiently wide field of view and high spatial, spectral, and temporal resolution.
Resolving the physics of the dynamic sun requires gathering simultaneous spectra across a con-
tiguous area over the full duration of these events, a goal now tantalizingly close to achievable
with continued investment in developing powerful new Integral Field Spectrographs to serve as
the foundation of both future ground- and space-based missions. This technology promises to
revolutionize our ability to study solar flares and CMEs, addressing NASA’s strategic objective
to “understand the Sun, solar system, and universe.” Since such events generate electromagnetic
radiation and high-energy particles that disrupt terrestrial electric infrastructure, this investment
not only advances humanity’s scientific endeavors but also enhances our space weather forecasting
capability to protect against threats to our technology-reliant civilization.
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1 Key Science Goals

Flares, coronal mass ejections (CMEs), and other energetic solar phenomena like filament erup-
tions and penumbral jets are long-standing enigmas of solar physics. Resolving what physical
mechanisms trigger flares, heat the solar atmosphere, and accelerate the resulting energetic parti-
cles requires quantitative measurements of the magnetic and thermodynamic properties of the solar
atmosphere at flare sites and surrounding regions before, during, and after flares. Measurements of
the magnetic field, temperature, and density of the solar atmosphere during such dynamic events
can only be achieved through rapid spectroscopic and polarimetric observations of spectral lines
sensitive to the local magnetic and thermodynamic conditions.

Science Case 1: Flare Spectroscopy. Flares are the result of dynamic magnetic field reconfigu-
ration above the stellar surface which accelerates particles and heats the surrounding atmosphere.
Broadband spectroscopy of the hydrogen Balmer line series is one of the most powerful diagnostic
tools for identifying the mechanisms heating the stellar atmosphere during flares [1]. The Balmer
continuum strength constrains the depth of the heating by non-thermal particles, the broadening
and series merging of the Balmer lines in the blue indicates the ambient electron density, and the
spectra of the He, B and v lines constrain the NLTE (non-local thermal equilibrium), opacity
broadening effects higher in the chromosphere [2, 3]. Blueshifts in the hydrogen Balmer series
observed in other stars are typically interpreted as signatures of filament eruptions and CMEs [4],
but the connection to corresponding spectral phenomena on the Sun remains uncertain [5]. Finally,
Ho linear impact polarization could diagnose non-thermal particle energy and angular distributions
[6, 7]. No other observations provide such a comprehensive set of diagnostics.
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Figure 1: (Left) Spatially resolved solar flare images from the IRIS spacecraft and (Right) stellar “super-
flare” spectra from [8]. The images show both circular kernels and more diffuse ribbons. Integral field
spectroscopy can probe whether these two structures are consistent with models derived from observations
of stellar flares, in which a small Balmer jump and strong optical continuum originate from the smaller
kernels, and the emission line flux (Balmer series, Ca II) predominantly originates from the diffuse ribbons.

Figure 1 (left panel) illustrates the appearance of solar flare ribbons. Such spatially resolved
observations of solar flares reveal that different parts of the flare evolve in distinct ways. How-
ever, few existing spectral observations have sufficient spatial resolution to capture the state of
the solar atmosphere in different parts (kernels or ribbons) of the flare. On the other hand, many
broadband spectroscopic observations of powerful stellar flares have revealed large variations in
the characteristics of the hydrogen Balmer lines during flare events. The right panel of Fig. |
shows the spectrum of a “super flare” event on the nearby red dwarf star AD Leonis. This spatially
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unresolved spectrum is modeled as a simple combination of a flare kernel source and flare ribbons.

The thus-far unpredictable nature of solar flares has made spectroscopic flare observations ex-
tremely challenging. Flare-producing active regions can usually be identified in advance [9], but
the precise location of the highly intermittent flare kernels and ribbons is unknown a priori (cf.
Fig. 1), causing instruments with a limited field of view (FOV) frequently to miss the critical im-
pulsive phase at the onset of the flare. Thus, optimal flare observations require both high resolution
and extended coverage in the spatial, spectral, and temporal domains. Because of these challenges
and the limitations of existing instruments at blue wavelengths, not a single spectroscopic obser-
vation covering the entire evolution of a solar flare exists to date. Even with the unprecedented
successes of the Interface Region Imaging Spectrograph (IRIS) in observing flare ribbon dynamics,
the longslit rastering and sit-and-stare modes have often missed the brightest kernels (see Fig. 1,
left) [10]. Far more severe ambiguities of slit placement relative to the bright kernels existed in the
pioneering work of the 1980s [1 1, 12]. Progress requires new instrumentation able to capture spec-
tra over a large 2D region simultaneously with sufficient spatial, spectral, and temporal resolution
across a wide wavelength range containing most of the hydrogen Balmer lines.

Science Case 2: Coronal Magnetometry. Measuring coronal magnetic fields [13, 14] also re-
quires spectra covering both space and time. White light and extreme ultraviolet (EUV) spectral
imaging of the solar corona reveals a host of fascinating coronal structures and dynamics shaped
and controlled by the magnetic field, including energetic eruptions that eject plasma at both high
temperature (coronal mass ejections) and low temperature (filament eruptions). The triggering and
accelerating mechanisms, as well as the physical connection between CMEs and flares, are unclear
[15, 16], but given the expected low plasma f of the inner corona, magnetic fields are accepted
as the dominant force, with reorganization of the coronal magnetic fields providing the energy.
Observations of the 3D coronal magnetic and thermodynamic structures before, during, and af-
ter CME events will illuminate the underlying physical processes. Knowledge of the global 3D
coronal magnetic field will also improve heliosphere models and space weather forecasting.

The low density, high temperature, and weak magnetic fields in the corona conspire to make
measuring the coronal magnetic fields exceptionally challenging. Only a handful of diagnostic
tools exists for directly measuring the coronal magnetic fields, including spectropolarimetry of the
coronal emission lines (CELSs) in the visible and IR [17, 18, 19], coronal seismology [20, 21], gy-
rosynchrotron radiation at radio wavelengths [22, 23, 24], and most recently the magnetic induced
transition (MIT) effect of EUV spectral lines [25, 26], each with their strengths and limitations.
For example, the polarized spectra of CELs contain information about the transverse direction and
longitudinal field strength of the magnetic fields, but are limited to off-limb observations for vis-
ible and infrared CELs. Conversely, while the MIT effect directly measures the magnetic field
strength, it does not provide information on the direction of the magnetic field. Most notable and
frustrating is that due to the low opacity of the coronal plasma, coronal measurements are sensitive
to contributions from all structures along the line of sight (LOS) and cannot be interpreted as in-
dicators of the local physical condition. Only tomographic observations that involve simultaneous
observations of an object from multiple nonredundant view points and employ tomographic in-
version techniques to reconstruct the 3D structure of the observed object can disentangle the LOS
integration effect to reveal the 3D structure of the corona [27, 28, 29, 30].

The development of new instrumentation and interpretation tools over the past two decades
has succeeded in measuring polarization in CELs, providing regular observations of the direction
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of the transverse component in coronal magnetic fields [31]. However, direct measurement of the
strength of the coronal magnetic field measurements has not been demonstrated with tunable filter
based spectrographs; integral field spectropolarimetry remains the only proven method for di-
rectly mapping the strength of coronal magnetic fields. While the newly commissioned Daniel
K. Inouye Solar Telescope (DKIST) is poised to provide more frequent and higher precision coro-
nal magnetic field measurements [32], the small FOV resulting from its relatively large aperture
limits its ability to make efficient global-scale observations.

Understanding CMEs requires large FOV,
high-temporal-resolution observations span-
ning the entire evolutionary history of the
events. Wide-field, spatially resolved mea-
surements of coronal magnetic fields are pos-
sible with the aid of an Integral Field Spec-
trograph (IFS), as clearly demonstrated by
the early work with fiber-optic-based IFSs
[14]. New medium-resolution (5”"-10") coro-
nal spectropolarimeters equipped with ad-
vanced [FSs from ground- and space-based ob-
Figure 2: Mission concept for the Solar TOmo- servatories with global coverage (0.5 — 1 Rz)
gRaphic Magnetometry (STORM) Mission, using will enable direct observational validation of
multiple spacecraft to simultaneously acquire multi- ~oronal models [33, 34] to advance coronal
Vieyvpoint mea§urements of the solar coron?ll Mag- magnetic field research in conjunction with
netic fields with ' IES co.ronal spectropolarimeters. high-resolution DKIST and space EUV ob-
Vector tomographic inversion can reconstruct the 3D ions. T h further. constellations of
magnetic, temperature, and density structure of the servations 0. pus . -
corona during CMEs. spacecraft equipped Wlth EUV imagers, IFS§,

coronal spectropolarimeters, and photospheric
vector magnetometers in circumsolar orbits observing from multiple view points (Fig. 2) will even-
tually enable tomographic reconstruction of the dynamic 3D magnetic and thermodynamic struc-
tures of the solar corona. For example, magnetic free energy (MFE) is believed to be the source
of energy powering CMEs. Probing the 3D coronal magnetic field structure via tomography will
directly measure the MFE of the eruption corona before, during, and after CMEs [35].

2 Technical Overview and Technology Drivers

This section highlights an ongoing effort to demonstrate Flare Sentinel, an Integral Field Spectro-
graph targeting spectroscopic observation of the hydrogen Balmer series spectral lines during solar
flares. This demonstration also serves to mature the technology and build confidence for future
development of IFS for coronal spectropolarimetry and other applications.

Technological options for Integral Field Spectroscopy. The principal hurdle to observing dy-
namic solar events is the inability of traditional spectrographs to gather simultaneous spectra cov-
ering the full region of interest. A conventional slit spectrograph can only observe a tiny region
at any moment, so capturing spectra over a larger region requires field scanning perpendicular
to the slit in a series of exposures (Fig. 3). Alternatively, slitless imaging spectrographs (e.g.,
Fourier-transform spectrographs and tunable Fabry-Perot filters) must employ wavelength scan-
ning to capture 2D spectra over a fixed region of interest [36, 37]. Due to their inability to observe
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all wavelengths in a 2D region at once, neither design is suitable for studying rapidly-evolving
phenomena such as solar flares and CMEs.
In contrast, an IFS can overcome these lim-
itations to acquire 3D hyperspectral data cubes . -y
with high temporal/spatial/spectral resolution. ; ] I"!'“““' NI
A standard IFS consists of two parts: an Inte-

{ |1
|
gral Field Unit (IFU) that reformats a 2D spa- iillliillll“ |||
tial field into an 1D linear field, and a grating T
spectrograph to disperse the light. IFUs come iil ||
1l' |
Rl li' :

!llr

in several different types (lenslet arrays, opti-
cal fiber arrays, and free-space image slicers)
which each feature particular advantages and
limitations when employed for heliophysics
observations. Lenslet arrays, consisting of a

-

Figure 3: Comparison of observed regions for tradi-
tional vs. Integral Field Spectrographs. Traditional slit

D f refractive 1 laced <1 spectrographs only capture a spectrum within a thin
array of refractive lenses placed <l mm region (shown in blue), requiring them to “scan” the

apart on a single substrate [39], can typically ;¢ ¢, capture the spectrum across a region of inter-
observe only a short wavelength range and g (outlined in red). In contrast, the image-slicer-
make inefficient use of space on the detector pased IFS in the DL-NIRSP instrument on DKIST
[40]. Contemporary fiber arrays can achieve a [38] uses 56 “slits” (outlined in black) to monitor the
high “fill factor” in the focal plane and provide full region of interest simultaneously. (Image credit:
excellent throughput [41, 42], but offer lim- NASA/GSFC)

ited spectral coverage, potentially high cross-

coupling between adjacent channels, and susceptibility to temperature/pressure swings and radia-
tion effects in spaceborne applications. Certain fiber materials also suffer from reversible darkening
under intense illumination, making them poorly suited for solar observations [43].

These and other limitations of lenslet and fiber IFSs prompted development of free-space image
slicers that can be employed in ground- and space-based solar telescopes. An image slicer consists
of a series of thin mirrors that reformats a 2D scene into a series of slits, allowing a downstream dis-
persive element to create a spectrum of each point in the scene (Fig. 4). Image-slicer-based IFSs are
highly stable, highly efficient, and can cover a wide wavelength range. The principal shortcoming
of existing diamond turned and polished glass image slicers has been the difficulty in fabricating
slicer mirrors with widths under 100 um. Because the spectral resolution of a spectrograph varies
with the width of the slicer mirrors (equivalent to the slit of the spectrograph), most existing image
slicer IFSs exhibit low spectral resolution. High-resolution instruments have traditionally required
large spectrographs and have thus been unsuitable for space applications [44, 45].

State of the art. Recent advancements in free-form diamond cutting optics machining technol-
ogy by Canon, Inc., in Japan [46] have introduced image-slicer IFUs with sub-100 pm slicer mir-
rors. Spectrographs built with this technology offer the high spatial and spectral resolution, high
efficiency, and low scattered light levels required for solar observations, as demonstrated by the
prototype IFU for the Diffraction-Limited Near IR Spectropolarimeter on DKIST [47]. Figure 5
shows the optical design of an innovative compact IFS, plus pictures of the mechanical assembly
and major components containing the active optical elements of a prototype that Canon recently
fabricated successfully. This IFS consists of a machined image slicer block followed by an array of
miniature spectrographs, as shown in the Zemax ray tracing (panel D). Panel C shows the compact
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spectrograph. Panel E is a view of the IFS exit port showing the dispersed spectra.

Original on-sky field of view
[ |
[ 2, |

Optical slicing (mirrors) of the on-sky image
N FETEEN B TR T B OIS

Spectral dispersion of the sliced image

The centerpiece of this new IFS
design is the small monolithic im-
age slicer block with 96 slicer mir-
rors each 20 um x 0.92 mm in size,
arranged in a 48 X 2 configuration
located at the center of the image
(see circle in Panel G). A scanning
electron microscope image of the im-
age slicer block appears in panel
H. The ability to fabricate 20 um
slicer mirrors represents a major

Y Y3duajanep

technology breakthrough in the field
of imaging spectroscopy. Doing so
allowed us to incorporate an array
of miniature spectrographs into the
IFU, eliminating the need for a large
spectrograph in the conventional IFS

Reconstructed M = /9 Spectrum of . design and yleldmg. an exception-
image each 2D "spaxel” ally compact IFS without compro-
R o ' | ' i mising optical performance. Panels
E.2OEE1 54 3 .
ENESEE £, E A and F show the camera mirror ar-
ENEEEE e e ray and collimator mirror array, re-

Wavelength A [A]

spectively. Each component contains
96 small powered mirrors fabricated
on a monolithic substrate. The grat-
ing array (panel B) consists of 96
surface-relieved gratings, also fabri-
cated on a monolithic substrate. The
successful fabrication of this chal-
lenging prototype demonstrates the
feasibility of this new IFS design.

Flare Sentinel — a technology demonstration. The IFS design of Fig. 5 is highly flexible and
can be optimized to meet the requirements of wide-ranging applications. Its compactness also
makes it easily scalable. For example, Fig. 6 shows the conceptual design of Flare Sentinel, an
imaging spectrograph with 96 x 192 x 2000 (ny,ny,n, ) hyperspectral format equipped with four
IFSs for flare spectroscopy of hydrogen Balmer series spectral lines. Recent observations of solar
white-light flares indicate that the size of the hottest kernels can be less than 05 [49, 50]. Each
IFS of Flare Sentinel has a 29" x 58” FOV with 0”6/pixel spatial sampling, giving Flare Sentinel a
combined 58" x 116” FOV that can fully cover a typical active solar region in a single pointing.
This large field size will yield complete spatial coverage of large flares (GOES class M, or X).
Broadband UV/optical imaging and hard X-ray observations have clearly shown that the energy
release processes during flares operate at a temporal scale of 1 s or shorter [51]. The best large-field
flare spectra to date were obtained with cadence of on the order of 10-30 s [2, 52]. Using modern

Figure 4: Operation of an image slicer style IFS. The region of
interest is imaged onto the “slicer,” which lies in the focal plane
and consists of many thin mirrors. The slicer re-images the scene
into multiple slices aligned on the dispersing element, generating
a separate spectrum for each slice. The resulting spectra form a
3D “data cube” which captures a spectrum at each point within
the 2D region of interest simultaneously. (Figure per [48]; Spec-
trum per [8]; Image credit: NASA/SDO)
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high-speed cameras, Flare Sentinel can achieve a temporal resolution of 10 Hz or higher, limited
only by the frame rate of the camera. Flare Sentinel will finally open the door to time-resolved 2D
spectroscopy of dynamic solar events with complete coverage of their evolution.

(A) Camera Mirror Array

Flare Sentinel IFS

Pl (H) SEM Image of Image Slicer

Slicer Mirror
Width.= 20 um

Collimator Mirror Array

Figure 5: Optical design (Panel D) and pictures of a new compact IFS prototype assembly and its major
optical components demonstrating the manufacturability of the new IFS design. The IFS is designed for a
54 mm x 40 mm sensor and covers the 3500-4500 A spectral window, encompassing the hydrogen Balmer
continuum and the Balmer series up to the Hy line with R = 2,000 spectral resolution. The beams for 3500,
4000, and 4500 A are shown in green, blue, and red, respectively. This IFS provides a 48 x 96 x 2000
(ny,ny,ny ) format hyperspectral data cube in one exposure. The entire spectrograph resides in a compact
70 mm x 70 mm X 100 mm volume as shown in Panel C. All components were fabricated on Invar substrates,
making the system mechanically robust for space missions.

3 Connection to Heliophysics Decadal Survey Objectives

The charter for the present Decadal Survey for Solar and Space Physics indicates that the report
will address two science areas relevant to the present work:

1. The structure of the Sun and the properties of its outer layers in their static and active states.
IFS technology will open new pathways to the study of active regions on the sun and thus
pertains directly to this science area.

2. Science related to the interstellar medium, astrospheres (including their stars), exoplanets,
and planetary habitability. With their ability to collect spectra and images for a contiguous
region centered on a star hosting a planetary system while simultaneously monitoring wave-
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front quality [53], IFSs are ideally suited to exoplanet studies such as those envisioned with

a large UV-optical-IR space telescope as proposed in the Astro2020 Decadal Survey [54].
In summary, progress in developing IFS technology will impact not only solar astronomy but also
exoplanet science, two areas of keen interest in heliophysics.

4 xIFSs

& 4 xIFSs

Field Divider

Figure 6: (Left) Optical design of a telescope equipped with 4 identical IFSs. A field divider (lower right
corner insert) separates the field into four beams for simultaneous observation by the IFSs. (Right) Concep-
tual design of Flare Sentinel telescope and spectrometer equipped with 4 IFSs.

4 Conclusion

More than a century of observations have led to a comprehensive understand of the static sun;
however, our current capabilities are still insufficient to decipher the physics of the dynamic sun. As
Fletcher et al. [55] lamented in a White Paper submitted to the 2010 Heliophysics Decadal Survey:
“It is an embarrassment that there is still no imaging spectroscopy of solar flares from space.”
While IRIS has partially remedied this shortcoming in the UV [56], advancements in optics and
large format focal plane array fabrication technologies have finally made the many advantages of
wide-FOV integral field spectroscopy from UV to far-IR feasible from space. Putting instruments
such as Flare Sentinel in space will enable round-the-clock monitoring and observations to trace
the evolution of thermodynamic properties of solar flares.

And yet, flares are just one aspect of the dynamic sun. Achieving a comprehensive understand-
ing of the energetic solar eruptions that can occur at every spatial scale requires employing all the
observational tools at our disposal simultaneously. IFS technologies have now reached a critical
point, with their potential for improving observing efficiency by almost two orders of magnitude
over conventional slit spectrographs finally putting revolutionary scientific advancements within
our grasp. The roadmap below outlines steps needed to advance the technology that will lead to an
eventual STORM mission. Timely investment in this area is needed to further advance IFS fabri-
cation technologies, encourage more innovative instrument designs, and advance their Technology
Readiness Level to lay a solid foundation for their deployment in space missions in the near future.

a E Fly Flare Sentinel / :

Coronal Magnetism
space observatory

Develop IFS for
coronal
magnetometry

Demonstrate Flare
Sentinel Instrument
on ground

Deploy STORM
mission
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